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1 Introduction

This effort concerns development of Highly accurate non-dispersive time-domain solvers for general
domains (Section 2); Fast approaches for computation of periodic Green’s functions (Section 3);
and Integral equations and algorithms with high-quality spectral properties for problems involving
combinations of perfect conductors and (lossy and loseless) penetrable scatterers (Section 4). In the
following sections we report on progress that has resulted from this effort in each one of these areas.

2 Time-domain Fourier-Continuation solvers

Significant progress occurred over the life of this contract in the area of FC (Fourier Continuation)
methods for Partial Differential Equations in the time-domain [1–7]. Our efforts in these areas
have resulted in explicit and implicit solvers for high- and low-frequency problems, for linear and
nonlinear equations, and including media such as fluids, solids and vacuum—and combinations
thereof. In each of the aforementioned publications a significant milestone was achieved. For ex-
ample, the contributions [1, 7] provide methods that can be used to enable FC solution of nonlinear
equations (such as the Burgers and Navier-Stokes equations) while maintaining high-order accu-
racy and dispersionlessness with quasi-unconditional stability: arbitrarily small values of ∆x can be
used for a fixed ∆t, provided the ∆t value adequately samples the problem. In the contribution [2],
in turn, methods for FC solution of problems containing variable coefficients were introduced; in
particular it was found that certain numerical boundary layers need to be adequately represented
in order to ensure accurate solution. Reference [3] introduced an approach that allows for treat-
ment of traction boundary conditions in wave propagation problems in solids [3, 4] (Navier’s elastic
wave equation) 1. The thesis [5] uses the Fourier Continuation method in multiple ways: to solve
equations, to propagate to distant regions without meshing, etc. The thesis additionally presented
an implementation of a three-dimensional FC solver, hybridized with Discontinuous Galerkin, and
fully implemented in a GPU computational infrastructure.

In all of these cases the FC method continued to display the excellent qualities observed pre-
viously in simpler contexts: high accuracy, exceptionally small dispersion and applicability to
completely general configurations. As discussed in the aforementioned contributions, for a given

1In view of its applications to seismic wave propagation Dr. Amlani’s PhD thesis received two awards at Cal-
tech, one in our department and another one for which there is institute-wide competition. The second one is
the Demetriades-Tsafka-Kokalis Prize in Engineering & Applied Science for best thesis, publication or discovery in
seismo-engineering.



accuracy the FC method can be anywhere between hundreds and up to millions of times faster,
for a given accuracy, than previous alternative solvers.2 The new methods thus enable solution of
previously intractable problems.

3 Periodic Green function

A number of contributions in the area of rough surfaces and periodic Green functions [8–11] over
the span of this contract include use of a new “windowing” approach to greatly accelerate Green-
function calculations [8], extension to periodic arrays of cylinders [9], introduction of acceleration
in the periodic solver [10] and extension to three-dimensional periodic problems [11] as well as the
novel construction, produced under sponsorship of this contract, of rapidly convergent periodic
Green functions at Wood anomaly frequencies [8]. The latter problem is very well known and
had defied solution since the early twentieth century. The new approach (which is based on use of
finite-differences of shifted Green functions for acceleration of convergence even at Wood anomalies)
greatly extends the applicability of the Green function methods for periodic scattering problems.
The new method has maximum impact in three dimensional problems—for which Green function
convergence can be extremely poor, as a result of the existence of large numbers of Wood frequencies.
In all, progress in the area of rough surface scattering has been very significant, with applicability
to problems in the general areas of metamaterials, oceanic scattering, light-coupling, etc.

4 Well-conditioned integral formulations and algorithms

Meaningful progress concerning well conditioned integral algorithms took place as a result of work
sponsored by this contract, including rigorous mathematical theory and powerful numerical algo-
rithms with applicability in a number of fields of science and engineering [12–21]. A variety of
problems and configurations were thus considered, including problems of scattering by open sur-
faces [12–14]; improved integral methods for closed surfaces [15]; problems concerning propagation
and scattering by penetrable scatterers [16]; studies of absorption properties of conducting mate-
rials containing asperities [17, 18]; as well as new methods for evaluation of Laplace eigenfunctions
on general domains and under challenging boundary conditions [19, 20]. A rigorous convergence
proof for the original methods [22] was provided in [21]. These contributions are discussed briefly
in what follows.

An important project we considered during the span of this effort concerns the problem of
scattering by open surfaces—the prototypical and simplest example of which is the infinitely thin
perfectly-conducting disc. This problem has many applications in optics, from the very small
to the very large (from nano-scale optical devices up and including the discovery of planets) as
well as applications in stealth, antenna design, electronic and photonic devices, etc. For the first
time a regularized integral equation yielding a Fredholm equation of the second kind for open-
surface problems was put forth in the contributions [12–14], including rigorous analysis of the
equations and efficient implementations in two- and three-dimensional space. In practice, the
second-kind character of the equation enables solution by iterative solvers in very small numbers
of iterations and it thus enables effective solution of the problem. The three-dimensional open-
surface implementation provided in [12] is highly effective and sophisticated; using minimal iteration

2Examples which demonstrate such improvements in computing times in simple contexts are presented in [6];
comparative studies concerning the performance of the FC and other solvers in distributed-memory parallel infras-
tructures, on the other hand, can be found in [3, 5].
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numbers3 it can produce solution of scattering problems of very high accuracy. In a related effort,
regularized integral equations and high-order solvers for sound-hard acoustic scattering problems
were put forth in [15]; use of these equations gives rise to very significant improvements in iterations
numbers over those required by the well known Burton-Miller formulation. The contribution [16],
in turn, shows that these ideas can be ported successfully to the problem of penetrable scattering
as well.

The contributions [17, 18] concern electromagnetic scattering by asperities (bumps or cavities)
on otherwise undisturbed planar regions. Relying on use of Sommerfeld integrals we thus developed
integral solvers which enable accurate evaluation of energy absorption for asperities of arbitrary
shape. The contribution [17] is in fact much more general: in our method configurations are
characterized by means of adequately selected structural elements so that physically diverse systems
can be treated with minimal variations of a basic mathematical structure. Our studies of a variety of
configurations [18] gave rise to interesting conclusions concerning the character of asperity-enhanced
absorption. We found that typically absorption is enhanced by the presence of asperities, although,
interestingly, absorption can also be significantly reduced in some cases—such as, e.g., in the case
of a trench on a conducting plane where the incident electric field is perpendicular to the plane.

Consideration of various engineering and scientific configurations lead us to our recent develop-
ment work concerning accurate numerical integral-equation methods for Laplace eigenvalue prob-
lems in general domains and under given boundary conditions [20]—with wide ranging applications
in the fields of optics, photonics and antenna design, amongst many others, including analysis of
waveguide and antenna problems. In particular this work provides a highly accurate eigensolver
under the challenging Zaremba boundary conditions (for which no robust solvers existed before this
work), and related Zaremba integral equation solvers [19] for the Helmholtz equation.

Rigorous proofs of existence, uniqueness and numerical stability are particularly useful in the
context of integral equation methods, as they determine the conditions under which numerical
solvers can be highly effective. Complete proofs of the well conditioned character of the afore-
mentioned integral equation formulation for open surfaces was provided in [13, 14]. A numerical
analysis of the related closed surface solvers [22], in turn, was for the first time put forth in [21].
We believe these two contributions contain a number of innovative theoretical elements which may
prove valuable in the general theory of integral equations.

5 Conclusions

We believe this work has given rise to significant advances in areas of mathematics and scientific
computing closely related to some of the most important scientific and technology areas of our day.
The time-domain solvers mentioned in Section 2 hold a promise to raise the bar in time-domain
solution of PDEs. The Green function methods mentioned in Section 3 have provided a solution
to the century-old Wood anomaly problem for the periodic Green function. The work on integral
equations and solver described in Section 4 has given rise to highly accurate solutions for some of
the most challenging scattering problems in science and engineering. We look forward to future
work that is at least as rewarding as the one described in this report.

References

[1] Bruno, O. P., and Jimenez, E. Higher-order linear-time unconditionally stable alternat-

3Iteration numbers: the number of iterations required by an iterative solver such as GMRES to meet a prescribed
tolerance in the residual of a given matrix equation.

3



ing direction implicit methods for nonlinear convection-diffusion partial differential equation
systems. Journal of Fluids Engineering 136, 6 (2014).

[2] Bruno, O. P., and Prieto, A. Spatially dispersionless, unconditionally stable FC–AD
solvers for variable-coefficient pdes. Journal of Scientific Computing (2013), 1–36.

[3] Amlani, F. and Bruno, O. P. An FC-based spectral solver for elastodynamic prob-
lems in general three-dimensional domains. Submitted to Journal of Computational
Physics (2015). Available at http://www.its.caltech.edu/~obruno/preprints/Amlani_

Bruno_submitted.pdf

[4] Amlani, F. A new high-order Fourier continuation-based elasticity solver for complex three-
dimensional geometries. PhD thesis, California Institute of Technology, 2014. Available
at http://www.its.caltech.edu/~obruno/preprints/faisalamlani_thesis_final.pdf

[5] Elling, T. GPU-accelerated Fourier-continuation solvers and physically exact computational
boundary conditions for wave scattering problems. PhD thesis, California Institute of Technol-
ogy, 2014. Available at http://www.its.caltech.edu/~obruno/preprints/elling_thesis_
final.pdf

[6] Albin, N., Bruno, O. P., Cheung, T. Y., and Cleveland, R. O. Fourier continuation
methods for high-fidelity simulation of nonlinear acoustic beams. The Journal of the Acoustical
Society of America 132, 4 (2012), 2371–2387.

[7] Bruno, O. P. and Cubillos M. Higher-order in time, “quasi-unconditionally stable” ADI
solvers for the compressible Navier-Stokes equations in 2D and 3D curvilinear domains. In
Preparation, (2015).

[8] Bruno, O. and Delourme, B., Rapidly convergent two-dimensional quasi-periodic Green func-
tion throughout the spectrum—including Wood anomalies, Journal of Computational Physics
262, 262–290 (2014).

[9] Bruno, O. P., and Fernandez-Lado, A. Fast Green function methods for problems of
scattering by periodic arrays of dielectric or conducting cylinders.In preparation (2015).

[10] Bruno, O. P., and Maas, M. A Fast Periodic Scattering Solver Applicable at Wood
Anomalies: Shifted Equivalent Sources and FFT Acceleration. In preparation (2015).

[11] Bruno, O., Shipman, S., Turc C. and Venakides S. Efficient Evaluation of Doubly Periodic
Green Functions in 3D Scattering, Including Wood Anomaly Frequencies, Available at arXiv:
http://xxx.tau.ac.il/abs/1307.1176

[12] Bruno, O. and Lintner, S., A high-order integral solver for scalar problems of diffraction by
screens and apertures in three dimensional space, J. Comput. Phys. 252, 250–274 (2013).

[13] Bruno, O. and Lintner, S., Second-kind integral solvers for TE and TM problems of diffraction
by open arcs, Radio Science, 47, RS6006, doi:10.1029/2012RS005035 (2012).

[14] Lintner, S. and Bruno, O., A generalized Calderón formula for open-arc diffraction problems:
theoretical considerations, To appear in Proc. Roy. Soc. Edinburgh. Available at http://

arxiv.org/pdf/1204.3699v1.pdf.

4



[15] Bruno, O., Elling, T. and Turc, C., Regularized integral equations and fast high-order solvers
for sound-hard acoustic scattering problems, International Journal for Numerical Methods in
Engineering 91, 1045–1072 (2012).

[16] Boubendir, Y., Bruno, O., Levadoux, D., and Turc, C., Integral equations requiring small
numbers of Krylov-subspace iterations for two-dimensional penetrable scattering problems. Ap-
plied Numerical Mathematics, in press. Available at http://www.its.caltech.edu/~obruno/
preprints/Transmission_BBLT_submitted.pdf

[17] Arancibia, Carlos P. and Bruno, O. P. High-order integral equation methods for prob-
lems of scattering by bumps and cavities on half-planes. J. Opt. Soc. Am. A, 31 (2014).

[18] Arancibia, Carlos P., Zhang, P., Bruno, O. P. and Lau, Y. Y. Electromagnetic
power absorption due to bumps and trenches on flat surfaces Journal of Applied Physics, 116,
124904-1–124904-10 (2014).

[19] Akhmetgaliyev and E., Bruno, O., Integral equation solution of mixed boundary-value prob-
lems: singularity resolution via Fourier continuation In preparation (2015).

[20] Akhmetgaliyev, E., Bruno, O., and Nigam, N., A boundary integral algorithm for the Laplace
Dirichlet-Neumann mixed eigenvalue problem, Submitted to Journal of Computational Physics.

[21] Bruno O. Dominguez, V. and Sayas F., Convergence analysis of a high-order Nystrom integral-
equation method for surface scattering problems, Numer. Math. 124, 603–645 (2013).

[22] Bruno, O. P. and Kunyansky, L., A fast, high-order algorithm for the solution of surface
scattering problems: basic implementation, tests and applications, J. Computat. Phys. 169,
80–110 (2001).

5




